Geometric Poisson Brackets on Grassmannians and Conformal Spheres

نویسنده

  • G. MARÍ BEFFA
چکیده

In this paper we relate the geometric Poisson brackets on the 2Grassmannian in R4 and on the (2, 2) Möbius sphere. We show that, when written in terms of local moving frames, the geometric Poisson bracket on the Möbius sphere does not restrict to the space of differential invariants of Schwarzian type. But when the concept of conformal natural frame is transported from the conformal sphere into the Grassmannian, and the Poisson bracket is written in terms of the Grassmannian natural frame, it restricts and results into either a decoupled system or a complexly coupled system of KdV equations, depending on the character of the invariants. We also show that the biHamiltonian Grassmannian geometric brackets are equivalent to the non-commutative KdV biHamiltonian structure. Both integrable systems and Hamiltonian structure can be brought back to the conformal sphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian Evolutions of Curves in Classical Affine Geometries

In this paper we study geometric Poisson brackets and we show that, if M = (G n IRn)/G endowed with an affine geometry (in the Klein sense), and if G is a classical Lie group, then the geometric Poisson bracket for parametrized curves is a trivial extension of the one for unparametrized curves, except for the case G = GL(n, IR). This trivial extension does not exist in other nonaffine cases (pr...

متن کامل

Poisson Structures Compatible with the Cluster Algebra Structure in Grassmannians

We describe all Poisson brackets compatible with the natural cluster algebra structure in the open Schubert cell of the Grassmannian Gk(n) and show that any such bracket endows Gk(n) with a structure of a Poisson homogeneous space with respect to the natural action of SLn equipped with an R-matrix Poisson-Lie structure. The corresponding R-matrices belong to the simplest class in the Belavin-Dr...

متن کامل

Differential-geometric Poisson Brackets on a Lattice

The concept of differential-geometric Poisson brackets (DGPB) was introduced in [i] in connection with an investigation of the properties of Poisson brackets of hydrodynamic type [2] and their generalizations. Recall that homogeneous DGPBs of m-th order on a phase space of fields u i @),i = i ..... N,x ~ ~ (in this note we confine attention to the spatially onedimensional case), taking values i...

متن کامل

Conformal Geometric Objects with Focus on Oriented Points

In this paper, we explore the geometric objects of conformal geometric algebra based on their IPNS (inner product null space) representation in some detail. Spheres of dimension 1 , 2 and three are objects of conformal geometric algebra. Usually, points in conformal geometric algebra are represented as ordinary spheres with zero radius, but what about circles with zero radius? We expect many pr...

متن کامل

A Survey on Nambu–Poisson Brackets

The paper provides a survey of known results on geometric aspects related to Nambu-Poisson brackets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010